Modeling and Evolutionary Learning of Modular Neural Networks

نویسنده

  • Qiangfu Zhao
چکیده

Modular Neural Networks Qiangfu Zhao The University of Aizu Aizu-Wakamatsu, Fukushima 965-8580, Japan Email: [email protected] Abstract In the last decade, a number of neural network models have been proposed in the literature. Some of them have been successfully incorporated in di erent intelligent information processing systems. Among these models, a group of most successful ones are the modular neural networks (MNNs). This paper introduces a general model of MNNs, and proposes a neural network tree (NNTree) model. An evolutionary algorithm is also given for designing the NNTrees. The usefulness of the NNTrees and the e ectiveness of the learning algorithm are veri ed through experiments with a digit recognition problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی

In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control

The editors describe in this book, new methods for evolutionary design of intelligent systems using soft computing and their applications in modeling, simulation and control. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and evolutionary algorithms, which can be used to produce powerful hybrid intelligent systems. The book is or...

متن کامل

Inverse modeling of gravity field data due to finite vertical cylinder using modular neural network and least-squares standard deviation method

In this paper, modular neural network (MNN) inversion has been applied for the parameters approximation of the gravity anomaly causative target. The trained neural network is used for estimating the amplitude coefficient and depths to the top and bottom of a finite vertical cylinder source. The results of the applied neural network method are compared with the results of the least-squares stand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001